Tag Archives: cereal

Real time virtual field – tashibunosho rice

Just over 10 years ago, the Living Field Project began to make a computer-based, virtual farm. A landscape was populated by crops and hedgerows, insects and mammals, tractors and people. The intention was to show how fields worked, how food was produced and how fields could not exist without the living things that make soil, vegetation and food webs. We exhibited the virtual farm at the Royal Highland Show, Edinburgh, 2008 [1] using computers and screens. Attempts to take it to the web ran out of funding a year or two later.

A farmed landscape, constructed by teamLab [2] and displayed at the Singapore ArtScience Museum [3] is a compelling example of learning by immersion in a virtual landscape. A screen on a wall in the first exhibition room depicts rice terraces on Kyushu Island, Japan.

teamLab’s Tashibunosho monitor at Singapore ArtScience Museum [4]

Four Seasons, a 1000 years, Terraced Rice Fields – Tasibunosho

The display is credited – 2016, Digital Work, 6 Channels, 1000 years, Artwork by teamLab. The caption reads:

“This monitor work depicts the harmonious existence between man and nature in the famed terraced rice fields, Tashibunosho in Kyushu Island, Japan. This work is generative, with the virtual world synchronising with the actual environment on Kyushu Island – weather and timings of sun setting and rising – in real time. ‘

The observer enters the room – the detail draws you in. A man leading a bullock along a path, groups of people doing agricultural tasks or eating a communal meal, a large bird (perhaps a crane) winging slowly across the landscape, clouds passing over the scene, dissolving and generating, water flowing between the fields. And humour that should appeal to all – a big frog marching along a path. It appeals to the young – they can touch!

Four clips from a 30 second phone video following a crane flying over the rice terraces (Living Field)

It is not possible to appreciate in one visit of a hour or two the changes on the monitor that must occur as days pass into seasons. teamLab explains:

“The imagery changes throughout the day; it grows brighter as the sun rises and glows with the setting sun before darkness sets in as the night deepens. Mirroring nature in many ways, the appearance of the artwork is constantly changing and no two moments are ever the same.”

There is no formal explanation of farming or food production. Yet the events witnessed are impressed on the mind. Rice crops are sown, irrigated and harvested in fields defined spatially by paths and bunds. The fields are not isolated but connected, most clearly by waterways and by farm workers with their draft animals. Nature flies or walks over or among the fields and into the surrounding low vegetative hills. The landscape is whole and connected – it is more than a set of fields.

The series of four images above left are single frames from a 30 second video taken by a phone. The video follows a large bird that casually flaps its way over the rice, each plant carefully delineated. It passes over scarecrows, overtakes a cloud. It continues past a large tree set in a clearing and around which people are seated. Finally it disappears out of the rice to the left of the monitor.

The display might provoke many points of discussion among groups of young visitors, depending on the time of year and whether rice is growing or not, for example:

  • how did the plants get there and what are they for, assuming most of the visiting children will not know where food comes from (as in the UK)
  • why are the fields set out in that pattern, why are they covered in water, where does the water come from – and what happens if it runs out
  • what do the farm animals do
  • where have the trees gone – we can only see one big one and a few smaller ones
  • where does the rice go when it’s been harvested – who eats it?
  • ….. and more …… (with thanks from some UK visitors for a unique experience)

Sources, links

[1] The Living Field’s Graham Begg and Gladys Wright designed and built Virtual Farm in 2007/08 for exhibition at the Royal Highland Show, Edinburgh in June 2008.

[2] teamLab’s web site gives examples of the Tashibunosho rice fields at https://www.teamlab.art/w/tashibunosho.

[3] More on the ArtScience Museum at Where art meets science: Singapore.

[4] The low-quality images here were taken by phone in the dim light of the exhibition hall and give an impression of the display. teamLab’s high res images can be see via [2].

Contact: geoff.squire@outlook.com or geoff.squire@hutton.ac.uk

Mashlum no more! Not yet

The mixed cereal-pulse crop known as mashlum. Decline after 1950 yet still grown in a few fields. The question of crop mixtures in prehistory.

An earlier article Mashlum – a traditional mix of oats and beans [1] suggested that the mixed cereal and pulse crop known as mashlum had died out in Scotland but no ….. an email from a farmer in Fife, Douglas Christie, confirmed that it was still grown on his farm. Here is a photograph.

Earlier we had related an account from 1925 [2] on the difficulties of growing mashlum and also the benefits. Mr Christie reports that the mixture worked very well, that chemical and nitrogen fertilizer costs were drastically reduced, but that he had to pick the field carefully as some weeds would be difficult to control.

He also overcame some of the problems in sowing and harvesting a mixture reported in earlier accounts from the 1920s. He has a drill  that can sow (direct drill) the two crops at the same time and a grain dresser that can easily separate the two crops after harvest,

Since hearing from Douglas Christie, the Living Field has noticed on Twitter that several farmers in the south of the UK are also working with mixed cereal-pulse crops. A further question arose in correspondence as to their antiquity.

Mashlum in the crop census

That mashlum merited a separate chapter in the 1925 Farm Crops [2] shows how seriously it was taken. It first appeared in the agricultural census [3] under the heading ‘vetches, tares, beans, mashlum for fodder’ between 1902 and 1919. The category in the census then changed slightly to ‘vetches and mashlum for threshing’ which declined to a low point in 1939 (grey symbols in Fig. 1). Presumably the need for fixed nitrogen during shortages caused vetches and mashlum to increase in area almost 10 times during the war years.

Most of this increase was in mashlum, which in the 1940s and early 1950s became the most widely grown legume crop in Scotland – covering more area than beans and peas – and was listed in the census simply as ‘mashlum for threshing’ (orange symbols in Fig. 1) , that is, grown and harvested for seed.   After a few years, it declined again in the early 1950s and had almost died out by 1960. In 1961, mashlum disappeared from the census and any remaining fields were combined with ‘other crops for stockfeeding’ (green symbols to the right of the trace in Fig. 1).

Fig. 1 The area sown with mashlum and related crops in the agricultural census in Scotland, 1902-1978 [3]. Mashlum was listed as a separate item in the crop census from 1944 to 1960 (orange). Before that it was part of ‘vetches, tares, etc.’ up to 1919 (light blue-grey), then vetches and mashlum for threshing (grey). Any crops remaining after 1960 were counted as part of ‘other crops for stockfeeding’ (green symbols).

The period from the late 1950s to the 1980s was the time of rapid increase in the use of mineral nitrogen fertiliser.  The cereal-pulse mix became uneconomical.

Despite its temporary revival in the 1940s, mashlum, as all other legume crops, was grown on a small part of the arable surface in the 20th century, generally less than 1% of it.

Cereal-pulse mixtures in prehistory?

A question then arises as to how old is the practice of sowing mixed  cereals and pulses. The Dictionary of the Older Scottish Tongue (DOST) finds that mashlum, in the spelling mashloche, was in use more than 500 years ago [4], but that in itself tells little of the crop’s ancestry. Was the method handed down from earlier Bronze or Iron Age  farmers to the medieval period or was it brought over by the Romans or early Christians?

The archaeological record in the north of Britain is thin on peas and beans: there is one record of field beans in Scotland  – also known as horse bean and Celtic bean, now faba bean.  Peas and beans appear far less frequently than cereal grains, but this difference is often attributed to the methods of cooking them: beans are less likely than grain to be charred and hence preserved. In an authoritative survey beans and cereals were examined in 75 locations in southern England [5].

At some archaeological sites, beans and cereals, such as emmer wheat, are found together and in numbers that suggest they were both grown as crops for food. Descriptions of the finds at Foster’s Field, Sherborne in Dorset  for example, include the line that beans ‘may have been grown as a mixed crop with barley or as part of a crop rotation system’ [6], a statement repeated in the broader survey [5].

The archaeologists agree that presence itself does not mean anything definitive about how the crops were grown – whether alone, in broadcast mixtures, or in rotation or sequence. It is not hard to imagine, though, that cereal-pulse mixtures have been used from the earliest times. Imagine a household or village had some cereal and some legume seed, not enough to be sown alone, but together they would make a field.

And the same farmers would have known, as all farmers up to the mid-1950s have known, that cereal and pulses together do better on poor soil than cereals alone because of the nitrogen-fixing ability of the pulses, and if the pulse is faba bean, then also the support offered by the stronger bean stem.

Common sense tells that they would have grown mixtures but there is no definitive evidence.

Sources, references

[1] Mashlum – a traditional mix of oats and beans posed some questions about the crop grown as a sown mixture rather than a line intercrop.

[2] O’Brien DG. 1925. The Mashlum Crop. In: Farm Crops, edited by Paterson WM, pages 297-302, published by The Gresham Publishing Company, London.

[3] Crop census records for the main crops from early in the century to 1978 are available online as Agricultural Statistics Scotland from the Scottish Government web site at Historical Agricultural Statistics. Mashlum is sometimes included with other pulses and forages but is given as a separate crop for the period indicated in Fig. 1 above.

[4] DOST Dictionary of the Older Scottish Tongue cites the crop in the spelling mashloche from the 1440s at http://www.dsl.ac.uk/entry/dost/mashloche.

[5] Treasure ER, Church MJ (2017) Can’t find a pulse? Celtic bean (Vicia faba L.) in British prehistory, Environmental Archaeology, 22:2, 113-127, DOI: 10.1080/14614103.2016.1153769. An excellent paper on the occurrence of field bean in Britain.

[6] Jones J. (2009) Plant macrofossils. In Best J, A Late Bronze Age Pottery Production Site and Settlement at Foster’s Field, Tinney’s Lane, Sherborne, Dorset.  Archaeology Data Service 2009: idoi:10.5284/1000076. Many of the source papers on the topic are only available free to academic data services, but this one is available online through the link. 

Light on bushel

When trying to work out how much grain was produced by crops such as bere, barley and oat in the 1800s, it was necessary to convert the bushel, the unit of measure that was common at that time, to the kilogram, which is the unit of weight in the modern International System (abbreviated to SI).

The bushel is a unit of ‘dry volume’ for measuring things like grain and meal rather than liquids. Farmers and grain traders  used a standard basket or barrel which when full would hold 1 bushel, equivalent to 8 gallons.  But obviously a bushel of ball bearings weighs more than a bushel of bere grain. So before it can be converted to modern units, the bushel has to be calibrated for each type of filling.

Table, jug and balance

Things used: table, kitchen measuring jug to 0.5 or 1 litre, kitchen balance (e.g. used for weighing out flour), lightweight container and  a bag of bere grain, grown in the Living Field garden, harvested and air-dried for some months. The bere grain was cleared of stems and leaves – any long awns still attached to individual grains were broken off.  The jug was filled with grain slowly. When a quarter full, the jug was banged gently on the table twice to consolidate the grain. The same was done when half full, three-quarters full and almost full. When full, the container was placed on the balance and the scale brought to zero. The grain was poured into the container and the weight noted.

In this instance, 0.5 litre of bere grain weighed 300 g (not 299 or 301).


A bushel equals 8 gallons or 36.37 litres. So a bushel holds 72.7 of the 0.5 litre measuring jug. Since 0.5 litre of bere grain weighed 300 g, a bushel of bere should weigh 21.8 kg.

The bushel is used in some countries, including the USA and Canada, as a unit of weight and so a bushel has a different weight assigned to it for each type of grain. We are pleased to see that the USA’s standard bushel of barley is 21.77 kg, close to our estimate. Their bushel of wheat and several other small grain crops and beans is  27.2 kg while that of oat is 14.5 kg. It means wheat is heavier and oat is lighter than barley or bere for a given volume. So a person would be happier carrying two bushes of oat than two of bere.

What causes the difference in the weight of a bushel? Provided the cereals are dried to a constant moisture content, the difference lies in the proportion of the (heavier) grain to the surrounding protective husks. Wheat grain commonly falls out of the husks at harvest so the light material may not be included; oat is more husky.

Therefore when converting yields of bere in bushels, we will used the conversion, 1 bushel = 21.8 kg.

Sources, references

University of North Carolina, USA: the source informs that the previous URL (www.unc.edu/~rowlett/units/scales/bushels.html) is no longer ‘live’ and recommends a superior location at University of Georgia – ‘Weights and processed yields of fruits and vegetables‘ .

National Museum of Scotland. Photograph of a bronze bushel measure.

The International Systems of units – Bureau International des Poids and Mesures: http://www.bipm.org/en/about-us/

Note of statistical procedures: the methods reported above can be used in a fun-sized comparison of different cereals and beans. A proper  scientific calibration would check the balance with standard weights at the beginning, then repeat the procedure several times with different lots of grain from the same harvest to get an average with a estimate of the variation. If two corn crops were compared, the average plus variation would allow a statistical test of whether the two were really different.

Links on this site

The bere line – rhymes with hairline and Thorburn’s Diagrams (for grain weights in bushels).

Grain measures in Ancient Greece (measuring tables at Ancient Messene)

Author/contact: geoff.squire@hutton.ac.uk